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Spectral local isotropy tests are applied to direct numerical simulation data, mainly at 
the centreline of a fully developed turbulent channel flow. Despite the small Reynolds 
number of the simulation, the high-wavenumber behaviour of velocity and vorticity 
spectra is consistent with local isotropy. This consistency is verified by the relationship 
between streamwise wavenumber spectra and spanwise wavenumber spectra. The 
high-wavenumber behaviour of the pressure spectrum is also consistent with local 
isotropy and compares favourably with the calculation of Batchelor (1951), which 
assumes isotropy and joint normality of the velocity field at two points in space. The 
latter assumption is validated by the shape but not the magnitude of the quadruple 
correlation of the streamwise velocity fluctuation at small separations. There is only 
partial support for local spectral isotropy away from the centreline as the magnitude 
of the mean strain rate increases. 

1. Introduction 
Several tests can be applied for checking local isotropy in turbulent flows (e.g. Monin 

& Yaglom 1975). Antonia, Anselmet & Chambers (1986) underlined however that 
different tests may have different levels of sensitivity and therefore provide different 
measures of the departure from local isotropy. In particular, it was noted that mean 
square values of derivatives (of either velocity or temperature) weighted all of the 
spectrum so that deviations of these values from isotropy do not necessary indicate a 
breakdown in isotropy of the small scales of motion. Derivatives do show departures 
from local isotropy, when ‘local’ is interpreted to mean ‘in physical space’, as originally 
proposed by Kolmogorov (1941) and as used in most applications of the concept. 

Indeed, the high-wavenumber regions of measured spectra of velocity fluctuations 
and of their derivatives appear to be consistent with local isotropy (e.g. Champagne 
1981; Antonia et al. 1986; Antonia, Shah & Browne 1987). The wake data presented 
by Antonia, Shah & B r - e  (1987, 1988) were obtained for small turbulence 
Reyngds-bers (RA1 = uFA, /u ,  where u1 is the longitudinal velocity fluctuation and 
A,  = u ~ / u ~ ~ ~  is the longitudinal Taylor microscale, was in the range 40-80). At such 
Reynolds numbers, the spectral separation between the energy-containing part of the 
spectrum and the dissipation part of the spectrum is insufficient for an inertial subrange 
to exist. Nonetheless, the high-wavenumber regions of the velocity derivative spectra 
seemed to satisfy the isotropic spectral relations, allowing for the experimental 
uncertainty. The result implies that spectral local isotropy can be attained, 
independently of the Reynolds number. This implication is of some importance and, 
in the present paper, is tested against numerical data. 

.I n 
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Direct numerical simulations (DNS) of turbulent flows (Kim, Moin & Moser 1987; 
Spalart 1988) have provided data that can permit a useful check of spectral isotropy, 
albeit at small Reynolds numbers. In this context, the simulations offer several 
advantages over hot-wire measurements. The use of Taylor’s hypothesis -which is 
required in experiments for converting time derivatives to x1 derivatives and for 
transforming the frequency n into a one-dimensional wavenumber k, (= 2nn/U, where 
B is the local mean velocity) - is avoided in the simulations. The general difficulties 
(e.g. Mestayer & Chambaud 1979) in inferring velocity derivatives from hot-wire 
signals at two points in space are absent in the simulations. Also, the x, resolution, 
especially in the wall region, is better for the simulations than for hot-wire 
measurements. 

In a previous paper (Antonia, Kim & Browne 1991), the DNS data in a turbulent 
channel flow were used to examine the behaviour of the mean squared values of the 
velocity derivatives across the channel. It was concluded that the assumption of 
axisymmetry (or invariance of the derivative statistics with respect to rotation about a 
particular axis) generally provided a better approximation to these values than local 
isotropy. However, as noted above, mean squared values of velocity derivatives 
provide a different test for local isotropy from the behaviour of the high-wavenumber 
part of the derivative spectra. In view of the simplicity and theoretical importance of 
the concept of local isotropy, the present paper uses the same DNS data to examine in 
some detail the extent to which spectral local isotropy is satisfied. ‘Spectral local 
isotropy’ is used here - as in Van Atta (1977) - to signify the degree to which spectra 
of various quantities satisfy the appropriate isotropic relations when the wavenumber 
is sufficiently large. The particular quantities considered include the three velocity 
fluctuations, three vorticity fluctuations and the pressure fluctuation. To our 
knowledge, no previous attempt has been made to compare the high-wavenumber 
region of the pressure spectrum with the isotropic calculation of Batchelor (1951) or 
Heisenberg (1948) although several two-point pressure correlation calculations have 
been reported for isotropic turbulence (Batchelor 1951 ; Uberoi 1953; Hunt, Buell & 
Wray 1987) and measurements and calculations of the pressure spectrum have been 
made by Jones et al. (1979) and George, Beuther & Arnott (1984) up to wavenumbers 
extending slightly beyond the inertial subrange. Fung et al.3 (1992) recent calculation 
of the pressure spectrum using a kinematic simulation of homogeneous isotropic 
turbulence reproduced the -$ inertial range behaviour, in agreement with the results 
of George et al. (1984). Unlike experimental data, the DNS data provide spectral data 
in terms of wavenumbers in both the streamwise and spanwise directions. The 
comparison between streamwise wavenumber spectra and spanwise wavenumber 
spectra provides a further check of spectral isotropy. 

A brief description of the database used in this study is given in $2. The isotropic 
form of various spectra is presented in $3, and this relationship is examined in $4 by 
comparing with the computed results. Further local isotropy tests using one- 
dimensional spectra and two-point correlations are given in & 5  and 6. The effect of 
Reynolds number on the high-wavenumber part of the spectra is considered in $7. 

2. DNS database 
The present study uses a database obtained from a direct numerical simulation of a 

fully developed turbulent channel flow at Re = U, h l v  = 7900, where Re is a Reynolds 
number based on the centreline velocity (U,)  and the channel half-width (h). This 
Reynolds number corresponds to h+ = hUJv = 395 or Re, = 17, Blv = 700, where 
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U, = ( T J ~ ) ; ,  8, and v denote the friction velocity, the momentum thickness, and the 
kinematic viscosity, respectively. At the centreline, RA1 is equal to 53. In the 
computation, 256 x 193 x 192 spectral modes - in the streamwise (x , ) ,  normal to the 
wall (x2) ,  and spanwise (x,)  directions, respectively - were used. The spacings between 
collocation points were Ax: x 7, Ax,+ x 0.05 (near the wall) to 5.5 (at the centreline), 
and Ax: x 4, where the superscript + denotes the normalization by the friction 
velocity and the kinematic viscosity. 

Turbulence statistics associated with this simulation are given in Kim (1989) and 
Antonia et al. (1991, 1992), and the reader may refer to these papers for the numerical 
algorithm and other details associated with the computation. With the spectral method 
used in the computation, the velocity field is advanced in the wavenumber space, and 
one-dimensional spectra are computed by summing over the other wavenumbers and 
time (in our case over several fields). 

3. Isotropic spectra of velocity, vorticity and pressure fluctuations 
For isotropic turbulence, the one-dimensional spectra of the three velocity 

components are well known and given in several texts (e.g. Batchelor 1953; Hinze 
1959; Panchev 1971). The isotropic forms of the u,, u2 and ug spectra are written as 

where $,t(kl) (i = 1,2,3) is the spectral density function of us, as a function of the one- 
dimensional wavenumber k, (in the x ,  direction). E(k) is the three-dimensional 
spectrum which depends on the magnitude k of the wavenumber vector k. The integrals 
Jrm$,t(k,)dk, and jomE(k)dk equal - - -  the velocity variance $ (no summation on i )  and 
the kinetic energy per unit mass gu; + ui + u:) respectively. 

The isotropic relations for spectra of the velocity derivatives ut,, (i = 1,2,3 and 
j = 1,2,3) were derived by Antonia et al. (1987). The spectrum of ut, is given by 

] = k; $u* (i = 1,2,3). (3) 

The spectra of and us,, are given by 

(4) 

with 
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Isotropic forms of the spectra of the vorticity fluctuation wi (= 6 i j k U k , , ,  c i j k  is the 
alternating tensor) were presented in Antonia et al. (1988), namely 

with 

Since E(k) is related to #,, via (l), expressions for #,. and #,,,, can also be written in 
terms of #u,, l  (e.g. Van Atta 1991); similarly and’h,. can be expressed in terms of 

yhe isotropic form of the pressure spectrum was derived by Batchelor (1951, 1953). 
Apart from assuming isotropy, the derivation also assumes Millionshtchikov’s 
hypothesis (see Batchelor 1951, 1953) relating fourth-order and second-order two- 
point product mean values. The relation for the three-dimensional pressure spectrum 
n(k)  follows from (8.3.18) and (8.3.19) in Batchelor (1953): 

6, * 

n(k)  = E(k) lom E(k’) Z(k) dk’ (9) 

where Z is a weighting factor given by 

(10) 
1 +s I(s) = xs2  + s - ~ )  - $ - g(s + s-’) (s - s-1)2 In - 

11 -sI * 

The one-dimensional pressure spectrum #&) is easily derived from n(k)  : 

with 

Equation (1 1) is of course analogous to the relation between the one-dimensional 
temperature spectrum and the three-dimensional temperature spectrum (e.g. Hinze 
1959, p. 285). 

4. Verification of relations in $ 3  
The determination of the integrals in the previous section require a knowledge of 

E(k). As noted in Antonia et al. (1988), there are various ways of obtaining an 
expression for E(k). In the approach adopted here, E(k) is inferred from the energy 
spectrum #&), which is equal to the sum of the spectra of ul, up and u3. The 
relationship between #, and E(k) follows from (1) and (2): 

E(k) is then given by 
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k: 
FIGURE 1. Turbulent energy spectrum at the centreline ( x J h  = 1): -, q5:; 

-__- , least-squares (sixth-order polynomial) fit to 4:. 
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FIGURE 2. Comparison between ul,  uz and u3 spectra (x , /h = 1) and the isotropic calculations based 
on (l), (2) and (3). (Note the different origins for curves a and b.) (a) q5:, - , DNS; --, 
calculation, equation (2). (b) +:*, ---, DNS; --, calculation, equation (2) &s: - , DNS; --, 
calculation, equation (2). 

A high-order polynomialt fit of the form 
In#,* = a,+a,x+ ...+ a,xn 

was applied to the data. Note that x = Ink: and the asterisk denotes normalization by 
the Kolmogorov scales 71 E (v3/$ and uK = (v$. (By definition, u&q+ = 1.) An 
adequate fit was obtained with n = 6 (figure 1). Starting with this fit, E(k) was then 
obtained from (13) and subsequently used in the isotropic calculations of the velocity, 
vorticity and pressure spectra. 

The comparison in figure 2, curve (a), between the u1 spectrum and the isotropic 
relation, ( I ) ,  indicates satisfactory agreement over the range 0.03 5 k: 5 1. In this 

t The NAG subroutine used Chebychev polynomials (up to the 12th order) with a weighted least- 
squares criterion. 
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range, there is also good agreement (curve b) between $u2 or gU3 and the values 
obtained with (2). Note that the approximate equality between $,, and $,, is consistent 
with isotropy (and with the less stringent requirement of axisymmetry). f h e  departure 
in curves (a) and (b) between the calculation and the data for k: 5 0.03 is not 
unexpected. The departure at the largest wavenumbers (k: > 1) partly reflects small 
errors (as illustrated by the slight upturn) in the distributions of $,,, $u and $u3 and 
also likely inaccuracies in E(k). Distributions of $uz (or $u3) were also cafculated using 

and a polynomial fit to $,,, similar to that used for $*. For 0.03 < k: < 1, the resulting 
calculation (not shown here) follows the DNS distributions of q5u2 (or $uJ as well as 
that in figure 2 (curve (6)). For k: > 1, the agreement is better than in curve (b), due 
to the direct use of $,, as input to the calculation. 

Reasonable agreement can be observed in figure 3(a)(i) between the w1 spectrum and 
the calculation based on (7). There is somewhat better agreement, figure 3(a)(ii) and 
(iii), between the DNS distributions of $,2 or and the calculation based on (8). For 
clarity, the distributions of $,o, and $,, are displaced in figure 3. These distributions are 
essentially identical, as can be inferred from the comparison with the calculated 
distribution, which is the same for $,z as for $, . The near equality between $, and $,,, 
like that between $uz and $u3, represents good support for axisymmetry. It should be 
noted that $,, and $,, can also be calculated by starting with $ul instead of E(k). Since 

By substituting this expression in (7) and (8), it is easy to show that 

and 

Equations (16) and (17) yield distributions, figure 3(b), which are in as good an 
agreement with the DNS distributions of $(dl and (or $,,,) as the calculations shown 
in figure 3(a), up to k: x 1. For larger wavenumbers, ( 16) and (17) are in better 
agreement with the DNS distributions since the DNS distribution of 4u is used as 
input for the calculations based on (1 6) and (17). 

The vorticity spectrum can be obtained from the sum of the spectra of the individual 
vorticity components, namely 

I .  I 

The reasonable agreement between $,(k1) and isotropy (i.e. (7) and (8) or (16), (17)), 
as shown in figure 3(a, b), follows from that between the individual components of 4, 
and the isotropic calculations. Note that $,(kl) should represent the energy dissipation 
spectrum for homogeneous turbulence. Antonia et al. (1988) observed a close 
correspondence between approximations to the energy dissipation spectrum and the 
vorticity spectrum, measured in the self-preserving region of a cylinder wake. The 
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FIGURE 3. Comparison between w,:.yz, w3 and w spectra and isotropic calculations (x , /h = 1). (Note 
the different origins for curves i, ii, 111 and iv.) -, DNS; --, calculation. For (a) the calculations 
are based on (7), (8) and (13). For (b), the calculations are based on (16), (17) using the DNS 
distribution of as input. 

present data closely satisfy the homogeneous relation 8 =  vz everywhere across the 
channel (Antonia et al. 1991) and the behaviour of $&) in figure 3 should therefore 
reflect closely that of $c(kl). 

The pressure spectrum q5: is shown in figure 4 together with the isotropic calculation 
based on (9), (10) and (11). There is quite satisfactory agreement between the two 
distributions over more than a half decade in wavenumber extending up to nearly the 
Kolmogorov wavenumber (kf = 1). For kf > 1, the DNS distribution curls up a little 
(this may be a numerical effect but should not be of serious concern here as it is 
relatively small) while the calculation may become unreliable due to inaccuracies in 
fitting to E(k) in this region. The agreement between the two distributions in figure 4 
implies support for the two assumptions made in Batchelor’s (195 1) calculation. 
Further evidence for local isotropy of the pressure spectrum is given in $ 5  while the 
normality assumption is considered in $6.  The agreement at relatively large k: in figure 
4 complements the agreement - primarily over the inertial subrange - between 
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4. Comparison between the pressure spectrum (x , /h = 1) and Batchelor’s 

$X(k:): -, DNS; --, calculated using (S), (11)  and (13). 
calculation. 

measurement and isotropic calculation obtained by George et al. (1984) in the mixing 
layer of an axisymmetric jet. 

5. Further checks of spectral isotropy and comparison with other flows 
The relationship between computed spectra in the streamwise and spanwise 

directions provides a further test for isotropy. 
Isotropic expressions for $u.,(k3) can be derived by relabelling the indices in (2), i.e. 

$ul(k3) = $,Jk,) or $&). Similarly one can show that 9, (k,) = $,P(kl) or $&,) 
while $, (k,) = $u (k,). Figure 5 (a) confirms that the ‘longitudinal ’ spectra $:l(kt) and 
$:3(k:) follow each other closely except at low wavenumbers. Figure 5 (b) contains the 
four ‘lateral’ spectra, namely $;Jk;), $:Jk:), $:,(k:) and $:,(k:). These spectra 
follow each other, at sufficiently large values of k: or k:, with approximately the same 
level of agreement as the ‘longitudinal ’ spectra. 

In the case of the scalar quantity p, one would expect that, for sufficiently large 
wavenumbers, 

Figure 5(c)  shows that $:(k;) and $,*(k:) are in close agreement for k: or k: 2 0.1, 
thus providing good support for isotropy of the small-scale pressure fluctuations. 

It is of interest to examine whether small-scale spectral isotropy can also be observed 
away from the centreline where the large-scale anisotropy is more pronounced than at 
the centreline. Deviations from isotropy are described in terms of anisotropy-invariant 
maps of dissipation and vorticity in Antonia et al. (1991). The relationship between k: 
and k: spectra at x 2 / h  x 0.4 (x: = 160) is shown in figure 6, the presentation being 
identical to that of figure 5.  The mean strain rate at x, /h  = 0.4 is not negligible 
( S z / B  x 6, where S is the mean shear rate, and is equal to twice the mean turbulent 
kinetic energy). The departure at low wavenumbers is slightly more pronounced in 
figure 6(b)  than in figure 5(b). The degree with which the pressure spectrum satisfies 
high-wavenumber isotropy in figure 6(c) is similar to that in figure S(c). At sufficiently 
large values of k: and k:, 9: (k:) and $: (k:) follow each other (figure 6a)  but they 
are not equal (the difference iooks small because of the log-log coordinates), the k: 

$ p ( k J  = $ p ( k 3 ) .  (19) 
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FIGURE 5. Comparison between velocity spectra in the streamwise and spanwise wavenumber spectra 
of velocity and pressure fluctuations at the centreline (x , /h  = 1). (a) -, 6: (k:); ----, #: (k:). (b) 
-9 #:,(k:); . . . . - 9  #:,(k:); ---, #:,(k:); ----, #:,(k:). (c) -, #f(k:); ----, #f&:). 

spectrum falling below the k: spectra. In figure 6(b) ,  for sufficiently large wavenumbers, 
qbZl(kj) x qb:z(kj) while qb:?(k:) x $2 (k:). These four magnitudes should however be 
the same (to satisfy local isotropy). As in figure 6 ( 4 ,  the k: spectra lie below the k: 
spectra. It is possible that these differences reflect a 'small' departure of the small scales 
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FIGURE 6. Comparison between streamwise and and spanwise wavenumber spectra of velocity and 
pressure fluctuations away from the centreline (x, /h x 0.4). (a) -, #: (kf); ----, 4; (k:). (6) -, 
#:pf); . ' ' ' ., #lfJ(kf); ---, #:,(k:); - - - - 9  #:p:). (c) -1 #;(if); ----2 #;(R:). 

from isotropy but a more reliable measure of this departure is needed (a possible 
measure is provided by the ratio shown in figure 7) before definite conclusions can be 
made. A more effective way of observing the departure is provided by the quantities 
plotted in figure 7 using linear scales. The quantities are the ratios of q5&J or $,&) 
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FIGURE 7. Ratio of $: (k:) or $:ik,+) and its isotropic value, calculated from (2). 
(4 $:,(k3/[#:,(k:)1iw9 (6) $:Jk3/[$:,(k3Iiw; -, X; = 40; ---, 160; ----. 395. 

and the corresponding isotropic spectra. The distributions support previous con- 
clusions inferred from the log-log plots. In particular, isotropy is closely satisfied for 
g5ul(k3) and k: R. 0.2 at x i  = 160 and 395. There is more scatter in the case of &,(k3) 
but the conclusion is unaltered. The departure from isotropy at low wavenumbers (kj 
5 0.2) is indeed more emphasized in figure 7 than in figure 6. 

The isotropy of small scales when S ~ / B  is sufficiently small and the possible 
departures from isotropy at larger values of @ / B  are not a peculiarity of this flow. 
Spalart’s (1988) DNS boundary-layer distributions of g5:l(kj), $:P<kj) and $:l(kj) at 
y+ = 200 (figure 21 a of this paper) show that and $,*,(kj) are in close agreement 
with isotropy (equation (2)) when kj 2 0.1 (the madmum value of k: was only 0.7). 
Results at y+ = 40 (figure 21 b of his paper) show that g5:Jkj) was in reasonable 
agreement with (2) for k: 2 0.1 but g5: (kj) was significantly underestimated by (2). 
The present spectra for g5:l(k:) and g5:,(k:) at x l  = 40 ( S ~ / B  = 7.6) show very similar 
trends to those of Spalart. The degree to which g5:,(k3/[g5:&3]is0 approximates 1 at 
x l  = 40 is comparable to that at x, /h  = 1 (xi = 395). At x i  = 40, the ratio 
g5:,(k,*)/[g5:,(k:)],, is however consistently greater than 1, the departure increasing as 
kj+ 1. 
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There is somewhat mixed experimental support for small-scale isotropy, in the 
context of (1) and (2). For example, most of the distributions of $,e(k,) and $&) 
obtained by Comte-Bellot (1963) in a fully developed turbulent channel flow indicate 
varying degrees of departure from (2) when k, is sufficiently large? (these departures 
are certainly smaller than those at small k,). The data show evidence of an increased 
departure from local isotropy as the wall is approached. There is however no evidence, 
at least when the strain rate is small, to support that the departure increases as the 
Reynolds number decreases. (For Comte-Bellot’s data, h+ is in the range 2300-8200, 
easily one order of magnitude larger than for the present simulations.) Klebanoff s 
(1955) measured u spectra in a turbulent boundary layer (x , /6  = 0.05 and 0.58) showed 
an asymptotic trend towards the isotropic calculation at large wavenumbers. Mestayer 
(1982) observed quite good agreement with (2) at x , / 6  = 0.33 in a relatively high 
Reynolds number turbulent boundary layer. Champagne, Harris & Corrsin (1970) 
reported reasonable agreement between (2) and their measurements of $u,(kl) and 
$,S(k,) in a nearly homogeneous turbulent shear flow (@/F = 5.9) when 0.04 5 0.5. 
The deviation from (2) when k: > 0.5 was attributed to spatial resolution limitations 
(both wire lengths and separation between the wires of the X-probe). 

6. Pressure and velocity correlations at small separations 
The correlation between the pressure fluctuations at two points is given by 

(Batchelor 1951, 1953) 

P(r)  = 222Jr(y-f)(92dy,  Y aY 

where P(r) = p(x)p(x + r), r = Irl, f is the correlation coefficient u,(x) ul(x + r)/z. 
Relations similar to (20) were obtained by Oboukhov (1949) and Oboukhov & Yaglom 
(1951). As noted by Batchelor (1951), relation (20) is considerably simpler than (9), 
which relates n(k) to E(k) (ll(k) is obtained by Fourier transforming P(r)).  Although 
(20) and (9) are equivalent, the advantage of (20) over (9) is that it circumvents the need 
to know the three-dimensional energy spectrum. Identifying r with r,, the separation 
in the x ,  direction, the distribution of f ( r l )  = u ~ ( x , ) u l ( x l + r l ) / ~  is shown in figure 
8(a). Also shown is the distribution of the lateral correlation coefficient g(r), calculated 
using the isotropic relation 

g =  f+-- rl af 
2 ar, 

For small r,, figure 8 (a) shows that g is in quite reasonable agreement with the u, and 
u3 correlation coefficients. It may be noted however that g is in slightly better agreement 
with the u3 correlation than with the u, correlation. Correspondingly one should expect 
that at high wavenumbers, the spectral calculation (equation (2)) should be in slightly 
better agreement with $3 than $,. This is indeed the case although the difference 
between $, and $3 is too small to be discerned on the log-log scale of figure 2(b). 

Using the distribution offshown in figure 8 (a),  P(r,) was calculated from (20). The 
calculated value of P(0) was about 12 YO larger than the pressure variance indicated by 
the simulation (this increase is consistent with the larger magnitude of the calculated 
spectrum at low wavenumbers, figure 4). However, the shape of the calculated pressure 
correlation, expressed by the ratio P(r,)/P(O), is in very good agreement with the DNS 
data for r: extending to about 20 (figure 8b).  This agreement is of similar quality to 

t Laufer’s (1953) distribution of $*(kl) on the centreline of a pipe showed a departure from (2) in 
the opposite direction to that of Comte-Bellot (1963). 



Isotropy of the small scales of turbulence 23 1 

0 20 80 loo 

0 20 40 60 80 loo 

FIGURE 8. Velocity and pressure correlations at small longitudinal separations (x,/h = 1). (a) 
Longitudinal and lateral-velocity correlation coefficients--, f = ul(xl) uI(xI + rl)/q, DNS. 
g: ----. up(x,) u2(x1 +rl)/u:, DNS; --- , us(x!) us(xl + rl)/ut, DNS ; --, calculated from (23). (6) 
Pressure correlation coefficients. (The longitudinal velocity correlation coefficient f is also shown 
(-).) P(rl) /P(0):  ---, DNS; --, calculated from (20). 

r: 

that shown in figure 4 at high wavenumbers. Comparison of figure 8(a and b) indicates 
that the shape of P(r,) is much more similar to that of g(r,) thanf(r,). This similarity 
has been noted by Hunt et al. (1987) who carried out a direct spectral simulation of 
nearly isotropic turbulence. These authors commented that for a distribution of 
Townsend-type large-scale eddies, the pressure variation across an eddy should be 
similar to that using u2. The value of P(0) calculated by Hunt et al. using (20) was about 
7% lower than the pressure variance obtained in their simulation. 

In Batchelor’s (195 1) calculation, fourth-order moments of velocity fluctuations 
were assumed to be related to second-order moments by 

- -- -- 
ui uj u; u; = W U U ;  u:, + u* u; u p ;  + u* u:, u, u;, 

where the unprimed and primed quantities refer to points x and x’ (= x + r )  
respectively. When all the indices are equal to 1, the above relation reduces to 

The validity of (22) was checked for the present data at the centreline with r -= rl and 
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FIGURE 9. Comparison between fourth-order and second-or$r correlations of u1 ( x , / h  = 1). (a) Left- 
(-) and right-hand sides (---) of (22), normalized by uf . (b) Left- (-) and right-hand sides 

(---) of (22), normalized by their respective values at r, = 0 or r3 = 0. 

r ZE r3. The resulting distributions are shown in figure 9(a), where the normalization is 
by q, and in figure 9(b), where each side of (22) is normalized by its own value at 
r = 0. At sufficiently large values of r, u1 ul(r) should become negligible and u: u ! ( r ) / q  
should approach 1. This is indeed what figure 9(a) indicates, consistent with 
Batchelor's expectation that (22) is more ~- likely to apply in the energy-containing range 
of r than at small separations. As r -+ 0, u: u:(r)/u: should approach 3 for a Gaussian 
distribution. Figure 9(a) shows that this is not the case, the flatness factor $/zz being 
equal to about 3.68 (it is reasonable to attribute this departure from Gaussianity to the 
small scales; one would also expect the departure to increase with Reynolds number). 
When the normalization of each side of (22) is by its own value at rl = 0 (or r3 = 0), 
the two sides of the equation are practically identical for values of rr (or r:) extending 
up to about 40. This agreement reflects that between P(r)/P(O) and Batchelor's 
calculation. This seems reasonable since only derivatives of the fourth-order velocity 
product enter the calculation. 

7. Dependence on Reynolds number 
The present data have been obtained at small values of the Reynolds number. Low 

Reynolds number effects are therefore expected to influence the statistics of the velocity 
and scalar fields everywhere in the flow. The effect of Reynolds number on the 
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FIGURE 10. Dependence on Reynolds number of streamwise wavenumber spectrum of uI, weighted 
by k:4 (x , /h = 1). - , present (R,, = 53). The other three distributions (R,, = 98 (----). 
443 (----), 4950 (---)) are those of Champagne (1978). 

Reynolds stresses has been examined by Antonia et al. (1992), while the influence of hf 
on the statistics of vorticity and turbulent energy dissipation was detailed in Antonia 
et al. (1991). In the present context, it is appropriate to consider how the high- 
wavenumber part of the spectra varies with Reynolds number. 

Champagne (1978) examined the Reynolds number dependence of spectra of ul,l 
(and also u ~ , ~ )  measured in different flows. He concluded that the Kolmogorov- 
normalized spectra are universal, only in the sense that they uniquely describe the high- 
wavenumber behaviour in different flows at the same value of R,,. He also found that 
the high-wavenumber spectra evolved with R,, in a manner consistent with the 
modified hypothesis of Kolmogorov. An appropnate way to examine this evolution is 
to plot k:4$:1, which emphasizes the high-wavenumber part of the spectrum, as a 
function of k:. The location of the present k:4 distribution in figure 10 appears to 
be consistent with the trend observed by champagne? (his distributions at R,, = 98, 
443 and 4950 corresponding to a plane wake, circular jet and atmospheric boundary 
layer respectively). George (1989) has suggested that the high-wavenumber variation 
exhibited by Champagne’s spectra need not be due solely to the increase in R,, but may 
also reflect the difference in large-scale anisotropy for the different flows. Gagne & 
Castaing (1991) proposed a method for collapsing the spectra of Champagne and 
others using a presentation that is incompatible with Kolmogorov’s (1941) similarity 
hypothesis. However, their proposal only extends down to R, x 130, and does not 
apply to the values of RA1 in the present simulations. 

For isotropic turbulence, the equation for the mean-square fluctuating vorticity 
reduces to (e.g. Champagne 1978) 

or 
r m  

t These values are lower than those given in Champagne’s paper by a factor of .\/2 because of a 
different definition of R,, in the latter. 
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- -a 
where Su,,, = u:, Ju;, is the skewness of u,, Using (23), the area under the present 
distribution in figure 10 indicates a value of S,, of -0.51 compared with an estimate 
of -0.49 for the left-hand side of (23). This'igreement, notwithstanding the small 
value of R,,, is due to the high-wavenumber weighting of the terms in the vorticity 
equation. It shows a correspondence between spatially local and spectral (small-scale) 
isotropy. Recently, Sanada (1992) showed, using direct numerical simulation of 
homogeneous stationary turbulence (R, x 120) that the dissipation ran e of the E(k) 

where v is a constant. This form is also supported by the present data, despite the lack 
of an inertial subrange. Sanada's form of the spectrum is however Reynolds-number 
independent, a result which (see below) does not appear to be supported by the data 
of figure 10. 

Spectra of velocity, vorticity and pressure fluctuations were also obtained using DNS 
data on the channel centreline with h+ = 180 (R,, = 33). (Details for this simulation 
can be found in Antonia et al. 1991, 1992.) The high-wavenumber behaviour of these 
spectra was also found to be consistent with small-scale isotropy. The maximum value 
of k: attained at this boundary condition was only equal to 0.6 because the spacing Ax: 
between collocation points in the x ,  direction was equal to 1 1  (as compared with 
Ax: x 7 for h+ = 395). Since the same value of Ax: was used at both Reynolds numbers, 
it seems more relevant to compare spanwise (instead of streamwise) wavenumber 
spectra at RA1 = 33 and RA1 = 53. The distributions (figure 11) of kt49:, and k t 4 9 ;  
show a significant increase in the Kolmogorov normalized spectrum, notwithstanding 
the relatively small increase in R,'. Although the data have been obtained for the same 
location (i.e. S = 0) in the same flow, the above increase is likely to reflect the Reynolds 
number evolution of the whole spectrum - resulting from the low values of R,, - and 
does not necessarily invalidate the suggestion by George (1989) that 'the Reynolds 
number variation observed by Champagne (1 978) may be simply a measure of the fact 
that the flows themselves were different '. 

It is of interest to compare the present pressure spectra at R,, = 53 with the pressure 
spectra measured by Jones et al. (1979) in the mixing layer of a circular jet. The latter 
measurements were presented over the range 2 < x , / D  < 6 ( D  is the jet diameter and 

spectrum was in close agreement with the exponential decaying form k- f exp (- ak*), 
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x1 is measured from the jet exit plane). The values of RAl, inferred from the data of 
Jones et al. increase from about 466 at x J D  = 2 to 841 at x , / D  = 6. The measured 
pressure spectra shown in figure 12 (a)  extend to values of k: near the start of the k:-i 
inertial subrange. The location of the present spectrum suggests that the inertial 
subrange for the Jones et al. experiments should extend up to k: x 0.1. For k: > 0.1, 
the present pressure spectrum provides a plausible extension of the Jones et al. 
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spectrum to high wavenumbers; the extension seems justified given that the roll-off in 
the measured pressure spectra may be attributed to probe roll-off due to spatial 
averaging (George et al. 1984). The present distributions of $2, and $2, (figure 126, c) 
are also plausible extensions (to the dissipation range) of the k:-t inertial subrange 
exhibited by the Jones et al. (1979) velocity spectra. 

8. Conclusions and discussion 
Low Reynolds number DNS data on the centreline of a fully developed turbulent 

channel flow are generally in good agreement with spectral local isotropy. The 
behaviour of high-wavenumber spectra of velocity, vorticity and pressure fluctuations 
is adequately described by the appropriate isotropic relations. 

The high-wavenumber pressure spectrum compares favourably with Batchelor’s 
(195 1, 1953) analysis which provides an expression for the three-dimensional pressure 
spectrum in terms of the three-dimensional energy spectrum. Equivalently, the shape 
of the two-point pressure correlation is in good agreement with Batchelor’s calculation 
for small longitudinal separations. For such separations, the shape of the two-point 
quadruple velocity correlation is also in good agreement with that implied by the joint 
normality assumption in Batchelor’s theory. 

The high-wavenumber isotropy exhibited by the results of @4 and 5 supports the 
idea that small scales are close to being isotropic, in spite of the absence of an inertial 
subrange. This absence implies that a large separation between the energy-containing 
lengthscales and the dissipative lengthscales is apparently not needed before the latter 
become isotropic. This issue as well as the need to better define conditions under which 
small scales may tend to a universal form are clearly of interest (e.g. Phillips 1991 ; 
Hunt & Vasilicos 1991 ; Sreenivasan 1991). For example, in the context of decaying 
oceanic turbulence, Phillips (199 1) observed that the Kolmogorov scaling of the high- 
wavenumber part of the spectrum need not imply a Kolmogorov-type energy cascade. 
The apparent insensitivity of the small scales to the large-scale anisotropy, as reflected 
by the present data, appears to be somewhat inconsistent with that of Domaradzky & 
Rogallo (1991) and Brasseur (1991), which point to strong non-local interactions 
between small and large wavenumbers. Such interactions would suggest that the small 
scales feel the straining motions by large scales and could therefore be anisotropic. It 
is possible, however, that although individual triad interactions are highly non-local (in 
wavenumber space), they may average out so that the net effect on the anisotropy of 
the small-scale motion is negligible (R. S. Rogallo, private communication). 

The analysis by Durbin & Speziale (1 991) has shown that the dissipation rate tensor 
cannot be isotropic if the mean strain rate is not zero. At x z / h  = 0.4, the mean strain 
rate is not negligible and the computed dissipation rate tensor is anisotropic. Yet figure 
6 ( c )  suggests that the small-scale pressure fluctuations satisfy isotropy as well as on the 
centreline (figure 5c) .  The strain at x z / h  = 0.4 produces an anisotropy which seems to 
shift the high-wavenumber velocity spectrum, but, in log-log coordinates, does not 
greatly alter its shape from that predicted by small-scale isotropy. As noted in $ 5 ,  a 
better measure of the departure from isotropy is required before the effect of 
parameters such as SF/6 on small scales of the turbulence can be assessed 
unambiguously. Such an investigation is currently underway by the present authors. 

As is well known, the assumption of local isotropy allows a considerable 
simplification when estimates of quantities such as care required through measurement. 
The present centreline spectra show that the departure from isotropy is negligible at 
high wavenumbers and relatively small at low wavenumbers. Accordingly, the 
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assumption of isotropy yields a sufficiently accurate estimate of F at this location (see 
Antonia et al. 1991). As the distance from the centreline (and therefore the magnitude 
of S) increases, the assumption becomes less adequate. It was shown in Antonia et al. 
that the assumption of local axisymmetry is more accurate (though less easy to 
implement) than local isotropy. Near the wall, both assumptions are tenuous; in this 
region, the experimenter may derive some comfort from the fact that the major 
contributions to F reside in only a few terms (see figure 4 of Antonia et al. 1991) and 
that the most important of these, viz. c, appears to be amenable to measurement 
(Zhu, Antonia & Kim 1993). 

We are very grateful to Dr P. A. Durbin, Dr R. S. Rogallo and Professor A. M. 
Yaglom for their comments on the manuscript. R. A. A. acknowledges the support by 
the Australian Research Council. 
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